Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
We propose the first practical method to detect atmospheric tau neutrino appearance at sub-GeV energies, which would be an important test of oscillations and of new-physics scenarios. In the Jiangmen Underground Neutrino Observatory (JUNO; starts in 2024), active-flavor neutrinos eject neutrons from carbon via neutral-current quasielastic scattering. This produces a two-part signal: the prompt part is caused by the scattering of the neutron in the scintillator, and the delayed part by its radiative capture. Such events have been observed in KamLAND, but only in small numbers and were treated as a background. With oscillations, JUNO should measure a clean sample of 55 events/yr; with simple disappearance, this would instead be 41 events/yr, where the latter is determined from Super-Kamiokande charged-current measurements at similar neutrino energies. Implementing this method will require precise laboratory measurements of neutrino-nucleus cross sections or other developments. With those, JUNO will have sensitivity to tau-neutrino appearance in five years of exposure, and likely sooner. Published by the American Physical Society2024more » « less
An official website of the United States government
